

Screw Compressors for Green Hydrogen

TNO Netherlands, Workshop hydrogen compression: synergies between traditional and novel techniques Jan Gehrmann, October 4th 2023

C

Agenda

01	Current operating window in H2 applications
	applications

CFD simulation to boost product development (?)

02 Specific challenges in Green H2 applications

03 Functional principle of screw compressors

04 Interna

Internal clearances drive efficiency

Further optimizations for H2/light gas applications

7 Future ambitions on Green H2 applications

8 Example Case

Compressor Map

Discharge Pressure [bar g]

- Screws for medium/large volume flows and medium pressures
- Delta p depending on suction pressure
- Pressure ratios depending on gas/fluid injection
- From atmosphere \rightarrow 10 bar a (oil free, single-stage)
- Two-stage solutions for higher pressures
- Mfr. data from approx. 500 50.000 Nm³/h H2
- Tip speed ≤ 130 m/s (oil free), 90 m/s (oil flooded)

Specific challenges in new H2 applications

- Convince decision makers of screws benefits from a product life-cycle view (low maintenance, high reliability)
- Follow the electrolyzer's dynamics (start/stop, turndown range to 10 %)
- Partial load efficiency vs higher number of stages (OPEX vs CAPEX)
- Bring "standardized/modularized" H2 solutions into the market, incl. double-stage solutions to ≥ 30 bar a (oil free)
- Fully automated + remote stop/flushing/restart, short stops under operating pressure
- Aligned booster application with downstream reciprocating compressors (managed interfaces, control system)
- General/Light gases with fluid injection:
 - Increase tip speed/capacity
 - Develop rotor profiles for high pressures/delta p and high efficiency
 - Measure/reduce internal clearances during fabrication and operation
 - Use of numerics and CFD modeling in multi-phase simulations (= gas + liquid)

Functional principle screw compressors

Series VMY Oil flooded **Series VRA** Oil free, dry or water injected **New Series VRW** Oil free, water flooded

Functional principle screw compressors

Dry compression

03

Max. heat losses (no internal cooling) Max outlet temperature accord. material selection

Limited delta p Max pressure ratio approx. 3

Ansys Twin Mesh FLOWNEX*

Functional principle screw compressors

Fluid injected compression

03

Fluid phase for cooling and gap sealing Fluid phase enters downstream piping/vessels

Higher pressure by cooling/gap sealing Delta p max approx. 9 bar

Limited gas velocity, less backflow Higher volumetric efficiency "More" isothermal compression

Ansys Twin Mesh FLOWNEX

Internal clearances drive efficiency

How to reduce the internal clearances in a screw compressor?

- Minimize rotor and housing tolerances in fabrication (cutting, milling, turning, grinding)
- Minimize thermal expansion by temperature management and material selection
- Minimize rotor deflection caused by pressure difference (-forces) by geometry and bearing selection
- Injection of fluid to seal the internal gaps 1 6 (and to cool down the gas)
- > Every machine compromizes on gas, use case(s) and guarenteed tolerances!

CFD simulation to boost product development (?)

> Challenge of high complex calculations in 3D meshes:

- Transient chambers at high rotor speed
- Deforming rotors and casings (variable clearances), cold start
- Heat exchanges (solid, gas, fluid)
- Phase transition fluid ↔ gas (evaporation, condensation)
- Real gas behaviour in dynamic chambers/small gaps (Small clearances radial, axial, intermesh in between the rotors)
- Interaction of transitions with method/meshing conditions
- Instationary + varying local physical geometries (= complex equations!)
- > Ultimate target is performance prediction:
- CFD as enabler for a digital twin
- Calculate gaps in real conditions
- Derive machine geometries, confirm simulation results on test benches!

Further optimizations for H2/light gas applications

- Online measurement, calculation of dynamic internal clearances
- Water-lubricated bearings (on suction side) → Remove 50% of sealing system!
- Increase tip speed (capacities) by proper rotor profiles \rightarrow Trials and studies
- Increase fluid injection \rightarrow Trials and studies
- Development of Tandem-stages (one housing, two pairs of rotors)
- Public/shared test benches for H2 compressors (real condition H2 in closed loops)
- Shared research results from:
 - Technische Universität Dortmund, Prof. Brümmer
 - City, University of London, Prof. Kovacevic
 - Leibniz Universität Hannover, Dr. Fleige
- > Collaboration with key suppliers/tools ongoing:
 - ANSYS, StarCCM+, CFX/TwinMesh, OpenFoam (numerics, simulation)
 - SRM Tec, SCORG, BOGE, inhouse tools (rotor geometry)

Future ambitions on Green H2 applications

- Bigger stages of water flooded type up to 25.000 m³/h (equiv. 100 MW atmospheric electrolysis)
- Standardized concepts for large low pressure electrolyzers (redundancy, availability vs CAPEX/OPEX)
- Two-stage concepts for pipeline injection pressure
- Use H2 test bench/closed loop operations for testing (confirming further CFD multi-phase simulations)
- Develop high pressure rotor profile
- Increase tip speed at maximum water injection
- Win projects using low pressure electrolysis
- > Provide solutions on short term as standard concepts are shaping now!

	+++)					
					A Holden In	
						TALLA.
IU					Fe Contract	
-					-	
					1	1 1
_ /			A			T
			21/2			
		E	Martin Train			· :
	A TO C					1
AI	25 745					100
					11/2	16 -
				a contraction		the second second
					Carl Carl	
			1			
			10/10/10/10/10/10/10/10/10/10/10/10/10/1			

Project Information				
Installation site	Poland			
Year of installation	2015			
Suction volume flow Q	2.100 m³/h			
Suction pressure p1	1.0 bar a			
Discharge pressure p2	3.0 bar a (1 st stage) 8.8 bar a (2 nd stage)			
Suction temperature t1	40 °C			
Process Gas	Wet hydrogen			
Application	Caprolactam (Chemical)			

Example case – VRA 336/236 (oil free, two-stage, water-injected)

251.23

Thank you for your attention!

LET'S TALK

Jan Gehrmann

jan.gehrmann@aerzen.com

www.aerzen.com