

Co-simulation of 3D CFD model for positive displacement compressor and 1D CFD model of connected system

Dr. Andreas Spille-Kohoff, Rainer Andres, Farai Hetze CFX Berlin Software GmbH, Berlin, Germany

9th International Conference on Compressor and Refrigeration July 10th-12th, 2019

XI'AN JIAOTONG UNIVERSITY

Contents

- Motivation
- Coupling Flownex and ANSYS CFX
- Application cases:
 - Acoustic wave propagation
 - Vane pump
 - Screw compressor
- Summary and outlook

Motivation

Motivation

- 3D CFD analysis of compressors is time consuming due to
 - Fine meshes with a lot of elements
 - Complex flow phenomena
 - Transient simulations with small time step sizes
- Thus, 3D CFD analysis should focus on the component itself
- But:
 - Artificial boundaries (pressure openings) are necessary
 - → unknown boundary conditions, unphysical interaction with boundaries
 - Interaction with system (pipes, storage vessels, valves, consumer loads, failure / start-up scenario) requires inclusion of more components into 3D CFD
 - \rightarrow larger meshes with longer simulation times
- Alternative: Co-simulation of 3D CFD with 1D CFD

Motivation

 Pool of components like pipes, vessels, junctions, valves, orifices, pumps with characteristic curves

- O(1) to O(10²) nodes per component
- Fast simulation of fluid behavior in network

Component 3D CFD

- Geometry of component fully resolved by mesh and physics of flow simulated or modeled
- O(10⁵) to O(10⁷) nodes per component
- Accurate simulation of fluid behavior in component

Conservation of mass, momentum, and energy

Coupling Flownex and ANSYS CFX

Flownex has generic, file-based interface to ANSYS CFX:

- User selects input and output variables (may depend on flow direction)
- Flownex starts ANSYS CFX solver
- After each time step, Flownex writes output variables into file, and waits for input data from ANSYS CFX

ANSYS CFX uses User Fortran routines:

- Read Flownex data at start of each • time step and set as boundary condition
- Simulate time step (with inner iterations) \rightarrow explicit coupling
- Write input data for Flownex

CFX Generic Interface - 1

Input into Flownex

Mass Flow Rate (Normal Speed (inlet Total Pressure (inle Static Pressure (inle Average Static Pres Stat Frame Tot Pre Total Temperature Static Temperature (inlet only) Stat. Frame Total Temp. (inlet & turbo mode only)

Output to ANSYS CFX

nlet/outlet)	Mass Flow
et/outlet)	Total Pressure
et only)	Absolute Pressure
et/outlet)	Temperature
essure (outlet only)	L
ress. (inlet & turbo mode only)	
(inlet only)	

sub User Routines

User Routine Read Flownex

User Routine Set Flownex

User Routine Write Flownex

Acoustic Wave Propagation

- Geometry
 - 1D pipe in ANSYS CFX with L = 0.20 m with 200 elements
 - Pipe 1 with L = 0.50 m and 50 increments
 - Pipe 2 with L = 0.15 m and 15 increments
 - Fixed pressure boundary at Node-3

0.85 m total length

Acoustic Wave Propagation

- Compressible transient simulation in Flownex and ANSYS CFX with air
- Gaussian pressure pulse specified in ANSYS CFX at inlet
- ANSYS CFX gives mass flow and average temperature to Flownex
- Flownex gives pressure and temperature to ANSYS CFX
- 1600 time steps à 5 μ s \rightarrow 8 ms simulation time \rightarrow 2.8 m travel distance

Acoustic Wave Propagation

- Pressure pulse leaves ANSYS CFX domain and enters Flownex at 1 ms
- Travels towards Flownex' boundary, is reflected at Node-3 and travels back
- Enters ANSYS CFX domain at 5 ms, travels towards inlet, is reflected and travels again to right
- Enters Flownex at 6 ms...

Vane Pump

Vane pump model in ANSYS CFX:

- Quasi-2D mesh with 45 000 hexahedrons
- Fluid
 - Air as ideal gas
- SST turbulence model
- Boundary conditions:
 - Rotational speed: 2380 rpm
 - Inlet at $p_{in} = 20$ kPa
 - Outlet at $p_{out} = 101.325$ kPa
 - Openings specified as standard [bar] (reflective) boundaries

Vane Pump

Flownex system with ANSYS CFX co-simulation:

- Pipes added as 1D models:
 - 0.1 m at suction side of vane pump (Pipe-5)
 - 0.5 m and 0.15 m at pressure side of vane pump (Pipe-1 and -3)
- Pressure boundary conditions set at Flownex boundaries (Node-8 and -6)

Vane Pump

Comparison of results:

- Periodical mass flow for 51.4 deg rotation angle
- Results show high pulsation amplitudes for uncoupled simulation (standing waves) at inlet and outlet
- Coupled simulation has smaller pulsation amplitudes in inlet and outlet mass flow rate, shape of pulsation also changes
- Co-simulation can reproduce real system behaviour with full interaction

co-simulation with Flownex

Slide 12

Screw Compressor

Screw compressor in ANSYS CFX:

- Unstructured meshes for stationary domains created with ANSYS Meshing
- Structured meshes for rotating domains created with TwinMesh for each 5°
 - 10 radial, 166 circumferential, 50 axial
 = 83 000 hexahedrons per rotor
- Fluid: Air as ideal gas
- SST turbulence model
- Boundary conditions:
 - Rotational speed: 12333 rpm
 - Inlet at $p_{in} = 1$ bar, T = 20°C
 - Outlet coupled to Flownex
- Time step size 68 µs (for 5° increment)
- approx. 2 h simulation time for one revolution on 4 cores

Screw Compressor

Flownex system with ANSYS CFX co-simulation:

- Flownex coupled to outlet of screw compressor
- Whole system initialised at 1 bar with (almost) closed valve
- Valve opens at 3 bar (design pressure ratio 1:3 for screw compressor)

Results for Flownex system with ANSYS CFX co-simulation:

Pressure at Flownex nodes:

- ANSYS CFX outlet region and pipe-2 are pressurized up to 4 revolutions ٠
- Valve opens and air fills pipe-3
- Pressure waves travel through pipes and cause mass flow pulsations ۲

Summary and Outlook

- 3D CFD simulation of positive displacement machines
 - Established tool for design and optimization
 - Fine meshes, complex physics, fast rotation, transient behaviour may require long simulation times
 - 3D CFD focuses on component with artificial boundaries
- 1D CFD allows fast simulation of attached fluidic networks with control mechanisms
- Co-simulation of 3D and 1D CFD
 - Takes interactions between systems into account
 - Considers control and feedback control mechanisms
 - Simulation time mainly determined by 3D CFD
- Conditional co-simulation switches between:
 - PD machine as 1D component with performance curves in standard situations
 → fast simulation
 - PD machine as 3D component via co-simulation when interaction is important
 → accurate results

Summary and Outlook

Example for more complex Flownex system with ANSYS CFX co-simulation:

For more information: Visit us at our stand here at the conference!